. SP ] 1 6 Ja n 20 09 HIGHER ORDER SPECTRAL SHIFT , II . UNBOUNDED CASE
نویسنده
چکیده
Abstract. We construct higher order spectral shift functions, which represent the remainders of Taylor-type approximations for the value of a function at a perturbed self-adjoint operator by derivatives of the function at an initial unbounded operator. In the particular cases of the zero and the first order approximations, the corresponding spectral shift functions have been constructed by M. G. Krein [13] and L. S. Koplienko [11], respectively. The higher order spectral shift functions obtained in this paper can be expressed recursively via the lower order ones, in particular, Krein’s and Koplienko’s spectral shift functions. This extends the recent results of [10] for bounded operators.
منابع مشابه
Representations of Hermitian Commutative ∗-algebras by Unbounded Operators
We give a spectral theorem for unital representions of Hermitian commutative unital ∗-algebras by possibly unbounded operators in a pre-Hilbert space. A more general result is known for the case in which the ∗-algebra is countably generated. 1. Statement of the Main Result Our main result is the following: Theorem 1. Let π be a unital representation of a Hermitian commutative unital ∗-algebra A...
متن کاملar X iv : m at h / 07 03 44 2 v 1 [ m at h . O A ] 1 4 M ar 2 00 7 OPERATOR INTEGRALS , SPECTRAL SHIFT AND SPECTRAL FLOW
We present a new and simple approach to the theory of multiple operator in-tegrals that applies to unbounded operators affiliated with general von Neumann algebras. For semifinite von Neumann algebras we give applications to the Fréchet differentiation of operator functions that sharpen existing results, and establish the Birman-Solomyak representation of the spectral shift function of M. G. Kr...
متن کاملAn Optimal L-bound on the Krein Spectral Shift Function
and |ξA,B(λ)| ≤ n if A −B is rank n (2) are well known; see, for example, [5] or [6]. The Krein spectral shift function can also be defined for unbounded self-adjoint operators A,B and enjoys the same properties as long as their difference is trace class. The results of this paper extend to general unbounded operators A and B (as long as their difference is trace class) but for simplicity, we w...
متن کاملJa n 20 09 Kähler Ricci Flow on Fano Surfaces ( I )
We show the properties of the blowup limits of Kähler Ricci flow solutions on Fano surfaces if Riemannian curvature is unbounded. As an application, on every toric Fano surface, we prove that Kähler Ricci flow converges to a Kähler Ricci soliton metric if the initial metric has toric symmetry. Therefore we give a new Ricci flow proof of existence of Kähler Ricci soliton metrics on toric surfaces.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009